2 resultados para Recombinant BCG

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recombinant expression of 19 different substructures of KLH in the prokaryotic sys-tem E. coli has been successfully achieved: each one of the eight single FUs a to h of both isoforms, KLH1 and KLH2, two substructures consisting of two consecutive FUs (KLH1-bc and KLH1-gh) as well as a cDNA encompassing KLH1-abc. All recombinant proteins, fused to an N-terminal 6xHis tag, have successfully been detected by immuno precipitation using monoclonal α-His-antibodies and polyclonal α-KLH1- and α-KLH2-antibodies. One exception remained: SP-KLH2-a, which was not detected by the α-His-antibodies. This allows speculations as to whether the coexpressed signal peptide can lead, at one hand, to the secretion of the recombinant protein, and on the other to the simultaneous cut-off of the leader peptide, which results in the splitting off of even more N-terminal 6xHis tag, leading to failed recognition by the appropriate antibodies. The comparison of native KLH with recombinantly expressed prokaryotic (E. coli) and eukaryotic (Sf9 insect cells) KLH was done using FU-1h. The weak detection by the polyclonal α-KLH1-antibodies of both recombinantly expressed proteins showed that the native protein was the best recognized. For the prokaryotic one, both the denaturation applied for solubilisation of the bacterial inclusion bodies and the inability of bacterial cells to add N-linked glycosylation, are the reason for the poor hybridization. In contrast, KLH1-h expressed in eukaryotic insect cells is likely to be glycosylated. The incubation with the α-KLH1-antibodies resulting in the same weak detection, however, revealed that the linked carbohydrate side chains are not those expected. The establishment of SOE-PCR, together with further improvement, has enabled the generation of a clone encompassing the complete subunit KLH1-abcdefgh. The se-quence analysis compared to the original KLH1 sequence showed, however, that the resulting recombinant protein is defective in two histidines, required for the copper bind-ing sites in FU-1b and FU-1d and in three disulfide bridges (FU-1a, FU-1b and FU 1g). This is due to polymerase-related nucleotide exchanges, resulting in a changed amino acid sequence. Nevertheless, all eight potential N-glycosylation sites are present, leading to the speculation that the recombinant protein can in theory be fully glycosylated, which is the most important aspect for the clinical applicability of recombinant KLH as an im-munotherapeutic agent. The improvement of this method elaborated during the present work indicates bright prospects for the future generation of a correct cDNA sequence encoding for the complete KLH2 subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The marine world is an immense source of biodiversity that provides substances with striking potentials in medicinal chemistry and biotechnology. Sponges (Porifera) are marine animals that represent the most impressive example of organisms possessing the ability to metabolise silica through a family of enzymes known as silicateins. Complex skeletal structures (spicules) made of pure biogenic silica (biosilica) are produced under physiological conditions. Biosilica is a natural material comprising inorganic and organic components with unique mechanical, optical, and physico-chemical properties, including promising potential to be used for development of therapeutic agents in regenerative medicine. Unravelling the intimate physiological mechanisms occurring in sponges during the construction of their siliceous spicules is an on-going project, and several questions have been addressed by the studies proposed by our working group. In this doctoral work, the recombinant DNA technology is exploited for functional and structural characterisation of silicatein. Its precursors are produced as fusion proteins with a chaperone tag (named TF-Ps), and a robust method for the overexpression of native soluble proteins in high concentrations has been developed. In addition, it is observed and proven experimentally that the maturation of silicatein is an autocatalytic event that: (i) can be modulated by rational use of protease inhibitors; (ii) is influenced by the temperature of the environment; (iii) only slightly depends on the pH. In the same experimental framework, observations on the dynamics in the maturation of silicateins allow a better understanding of how the axial filaments form during the early stages of spicule construction. In addition, the definition of new distinct properties of silicatein (termed “structure-guiding” and “structure-forming”) is introduced. By homology models and through comparisons with similar proteins (the cathepsins), domains with significant surface hydrophobicity are identified as potential self-assembly mediators. Moreover, a high-throughput screening showed that TF-Ps could generate crystals under certain conditions, becoming promising for further structural studies. With the goal of optimise the properties of the recombinant silicatein, implementation of new production systems are tried for the first time. Success in the expression of silicatein-type proteins in insect and yeast cells, constitute a promising basis for further development, towards the establishment of an efficient method for the production of a high-value pure and soluble protein.